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Absiract : An intramolecular ene approach to stereocontrol over contiguous stereogenic
centres is described, where three centres can be created with very high level of both
diastereofacial selectivity and diastereoselectivity by the influence of an oxygen substituent
as a stereodirecting resident group in the ene component.

The intramolecular ene reaction has recently received considerable attention! and offers a valuable
method for carbo- and heterocyclization. The stereochemistry about the forming carbon-carbon bond is
usually cig for five-membered rings. The relationship between the stereochemistries of substituents on
the tether and the stereochemistry of carbon:carbon bond formation is not, however, as easily
predlcted As part of our continuing program to explore the potential of intramolecular ene reactions
for organic synthesxs,3 we were interested to study the topological influence (C-4) over developing (C-3,
C-7) stereogenic centres in the ene cyclization step (Scheme 1).
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Although a few reports have dealt with this issue (X = CHs; Y = 0/CHg),'4 the influence of
an oxygen substituent(X = OR) as a stereodirecting resident group in the ene compartment has
not been systematically invest:iga.ted.4 Prompted by the occurrence of hydroxyl-bearing chiral
centres in cxclopentanoid natural products,s we have now studied this facet of 5-(3,4) ene
cyclizations using six 1,6-dienes, 1-6, and in this letter we wish to report the preliminary
results of our investigation.

The parent dienes, 1-8, with different substituents on the ene, the tether and the enophile
were prepared following standard synthetic techniques as summarized in Scheme 2.
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(a) LiCaCCH2CH(CH3)o/THF-HMPA, -78°, 80% (ref.11); (b} i- BuMgBr/Cp2TiClz (cat.), 68%
(ref.12); (c) t-BuPh2SiCY/Im/DMF, 92%;(d) PPTS, ethanol,97%; (6 DMSO/(COCl)2, 90%; (f)
(MeO)P(O)CH(Li)CO2Me, followed by purification by prep. tle, 80% (ref.13); (g) 3% HCl-MeOH,
59%; (h) t-BuMe2SiCl/Im/DMF, 95%; (i) LiCaCCH2CH2SiMea/THF- HMPA, -78°, 87% (ref.14);
() Me2C=CHMgBr, 52%; (k) CH2(CO2Et)2/piperidinium acetate, 88%.

The thermolytic cyclizations of 1, 8,4 and § were carried out in toluene (5% solution) in
a sealed tube under an atmosphere of argon. Attempts to cyclize the free alechol 2 under this
condition failed as it underwent extensive decomposition. The ene reaction of 8 was effected
at ambient temperature in CHzCl2 in the presencs of a Lewis acid(ZnB:

rq). The product ratios
(Table 16) were determined by high-field NMR and capillary GC analysis. 5

RO

7, R = SiMezBut
9, R = SithBut

" a“

wx

007Me

I

Table 1 reveals the following significant features of the present enereaction. Inruns 1 and
2, diastereoselectivity is uniformly high, but the diastereofacial selectivity increases with
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increasing steric bulk of the sﬂyl“ substituent on oxygen. The most astonishing result is,
however, observed in run 8 where the 1,6-diene 4 carrying a strategically located TMS group gives
the cyelopentanoid allylsilane 11 in very high yield with nearly 100% dmtereoueloctxwty and
100% diastereofacial selectivity! While 1} should serve as a key intermediate® for coriolin,'®

9/10 may be tailored into oreodaphnenol via intramolecular keto-carbenoid addition across
the E-double bond. In runs 4 and 5, while diastereofacial selectivity is very high,
dlastereoselechwty ac%.%l}lvo creases in the Lewis acid catalyzed reaction in accordance with

previous observation

Table 1%15. Stereochemical Control over Three Contiguous Stereogenic Centres

ab . . e Combined  Diastereoselectivity /
Run Educt Temp./time Products/(ratio ) vieldd diastereofacial selectivity®

1 8  235°C/40h 78 (79:21) 83% ~100% cis/79%trans
2 1 235°C/40h 9/10  (88:12) 97% ~100% cis/88% trans
3 4  235°C/18h 11 96% ~100%cis/~100% trans
4 B  235°C/40h  12/13  (88:12) 86% 88% cis/100% trans
5 6 rt./2h 14/18  (96:4) 90% 96% trans/100% trans

%In runs 1-4, a 5% solution of the diene in toluene was heated in a sealed corning tube under
argon. In run 5, a 0.5M solution of the diene in CH2Cl2 was exposed to ZnBrg (anhyd.). bThe GC
traces in these runs are as follows : run 1 (1.8:77.7:20.5); run 2 (1.09:81.4:5.57:11.9); Run 3
(96.4.1.9.0.6.1.3); run 4 (11.9:87.5:0.6); run 5 (95.6:4.4). “Trace diastereomers were not properly
characterized. “Isolated after chromatography. ®*Trace diastereomers were ignored.

A culmination of this type of 5-(3,4) ene cyclization methodology is its ideal application to
the diastereoface selective and diastereoselective synthesis of (¢)-cucurbic acid methyl ester as
described in the accompanying paper.
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